Bottom-Up Segmentation Based Robust Shape Matching in the Presence of Clutter and Occlusion
نویسندگان
چکیده
In this paper, we present a robust shape matching approach based on bottom-up segmentation. We show how over-segmentation results can be used to overcome both ambiguity of contour matching and occlusion. To measure the shape difference between a template and the object in the input, we use oriented chamfer matching. However, in contrast to previous work, we eliminate the affection of the background clutters before calculating the shape differences using over-segmentation results. By this method, we can increase the matching cost interval between true matching and false matching, which gives reliable results. Finally, our experiments also demonstrate that our method is robust despite the presence of occlusion.
منابع مشابه
Robust Instance Recognition in Presence of Occlusion and Clutter
We present a robust learning based instance recognition framework from single view point clouds. Our framework is able to handle real-world instance recognition challenges, i.e, clutter, similar looking distractors and occlusion. Recent algorithms have separately tried to address the problem of clutter [9] and occlusion [16] but fail when these challenges are combined. In comparison we handle a...
متن کاملUsing Spin Images for Efficient Object Recognition in Cluttered 3D Scenes
We present a 3D shape-based object recognition system for simultaneous recognition of multiple objects in scenes containing clutter and occlusion. Recognition is based on matching surfaces by matching points using the spin image representation. The spin image is a data level shape descriptor that is used to match surfaces represented as surface meshes. We present a compression scheme for spin i...
متن کاملEfficient Multiple Model Recognition in Cluttered 3-D Scenes
We present a 3-D shape-based object recognition system for simultaneous recognition of multiple objects in scenes containing clutter and occlusion. Recognition is based on matching sugaces by matching points using the spin-image representation. The spin-image is a data level shape descriptor that is used to match surfaces represented as su$ace meshes. We present a compression scheme for spinima...
متن کاملSaliency Based Opportunitstic Search for Object Part Extraction and Labeling
We study the task of object part extraction and labeling, which seeks to understand objects beyond simply identifiying their bounding boxes. We start from bottom-up segmentation of images and search for correspondences between object parts in a few shape models and segments in images. Segments comprising different object parts in the image are usually not equally salient due to uneven contrast,...
متن کاملSaliency Based Opportunistic Search for Object Part Extraction and Labeling
We study the task of object part extraction and labeling, which seeks to understand objects beyond simply identifiying their bounding boxes. We start from bottom-up segmentation of images and search for correspondences between object parts in a few shape models and segments in images. Segments comprising different object parts in the image are usually not equally salient due to uneven contrast,...
متن کامل